
LEGO: Leveraging Experience in Roadmap
Generation for Sampling-Based Planning
Rahul Kumar1, Aditya Mandalika2, Sanjiban Choudhury2 and Siddhartha S. Srinivasa2

Abstract—We consider the problem of leveraging prior experi-
ence to generate roadmaps in sampling-based motion planning.
A desirable roadmap is one that is sparse, allowing for fast
search, with nodes spread out at key locations such that a low-
cost feasible path exists. An increasingly popular approach is
to learn a distribution of nodes that would produce such a
roadmap. State-of-the-art is to train a conditional variational
auto-encoder (CVAE) on the prior dataset with the shortest
paths as target input. While this is quite effective on many
problems, we show it can fail in the face of complex obstacle
configurations or mismatch between training and testing.

We present an algorithm LEGO that addresses these issues by
training the CVAE with target samples that satisfy two impor-
tant criteria. Firstly, these samples belong only to bottleneck
regions along near-optimal paths that are otherwise difficult-
to-sample with a uniform sampler. Secondly, these samples are
spread out across diverse regions to maximize the likelihood
of a feasible path existing. We formally define these properties
and prove performance guarantees for LEGO. We extensively
evaluate LEGO on a range of planning problems, including
robot arm planning, and report significant gains over both
heuristics and learned baselines.

I. INTRODUCTION

We examine the problem of leveraging prior experience in
sampling-based motion planning. In this framework, the
continuous configuration space of a robot is sampled to
construct a graph or roadmap [1, 2] where vertices represent
robot configurations and edges represent potential movements
of the robot. A shortest path algorithm [3] is then run to
compute a path between any two vertices on the roadmap.
The main challenge is to place a small set of samples in key
locations such that the algorithm can find a high quality path
with small computational effort as shown in Fig. 1b.

Typically, low dispersion samplers such as Halton se-
quences [4] are quite effective in uniformly covering the
space and thus bounding the solution quality [5] (Fig. 1a).
However, as they decrease dispersion uniformly in C-space,
a narrow passage with δ clearance requires O(( 1

δ )d) samples
to find a path. This motivates the need for biased sampling to
selectively densify in regions where there might be a narrow
passage [6–10]. These techniques are applicable across a wide
range of domains and perform quite well in practice.

However, not all narrow passages are relevant to a given
query. Biased sampling techniques, which do not have access
to the likelihood of the optimal path passing through a region,
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(a) (b)
Fig. 1: Comparison of roadmaps generated from (a) uniform Halton sequence
sampler and (b) from a generative model trained using LEGO. The task is
to plan from the shown configuration over the table and obstacle to the other
side. The graph is visualized by end effector traces of the edges.

can still end up dropping samples in more regions than
necessary. Interestingly, the different environments that a
robot operates in share a lot of structural similarity. Hence,
we can use information extracted from planning on one such
environment for deciding how to sample on another; we can
learn sampling distributions using tools such as a conditional
variational auto-encoder (CVAE). Ichter et al. [11] propose
a useful approximation to train a learner to drop samples
along the predicted shortest path: given a training dataset
of worlds, compute shortest paths, and train a model to
independently predict nodes belonging to the path. After
all, the best a generative model can do, is to sample only
along the true shortest path. However, this puts all of the
burden on the learner. Any amount of prediction error, be it
due to approximation or train-test mismatch, results in failure
to find a feasible path.

We argue that a sampler, instead of trying to predict the
shortest path, needs to only identify key regions to focus
sampling at, and let the search algorithm determine the shortest
path. Essentially, we ask the following question:

How can we share the responsibility of finding the
shortest path between the sampler and search?

Our key insight is for the sampler to predict not the shortest
path, but samples that possess two main characteristics. First,
we only need to predict samples in bottleneck regions. These
are regions containing near-optimal paths, but are difficult
for a uniform sampler to reach. Secondly, we need diversity
amongst samples. Train-test mismatch is common and to
be robust against it we need to sample nodes belonging to
a diverse set of alternate paths. The search algorithm can
then operate on a sparse graph containing useful but diverse
samples to compute the shortest path.
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Fig. 2: The LEGO framework for training a CVAE to predict a roadmap. (a) The training process for learning a generative sampling distribution using a
CVAE. The input is a pair of candidate samples and feature vector. (b) At test time, the model is sampled to get vertices which are then composed with a
constant sparse graph to get a final roadmap.

We present an algorithmic framework, Leveraging Experience
with Graph Oracles (LEGO) summarized in Fig. 2, for
training a CVAE on a prior database of worlds to learn a
generative model that can be used for roadmap construction.
During training (Fig. 2a), LEGO processes a uniform dense
graph to identify a sparse subset of vertices. These vertices are
a diverse set of bottleneck nodes through which a near-optimal
path must pass. These are then fed into a CVAE [12] to learn a
generative model. At test time (Fig. 2b), the model is sampled
to get a set of vertices which is additionally composed with
a sparse uniform graph to get a final roadmap. This roadmap
is then used by the search algorithm to find the shortest path.

We make the following contributions:

1) A framework for training a CVAE to predict a roadmap
with different target inputs. We identify two main short-
comings of the state-of-the-art [11] that uses the shortest
path as the target input - failures in approximation, and
failures due to train-test mismatch (Section IV).

2) LEGO, an algorithm that tackles both of these issues. It
first generates multiple diverse shortest paths, and then
extracts bottleneck nodes along such paths to use as the
target input for the CVAE (Section VI).

3) We show that LEGO outperforms several learning and
heuristic sampling baselines on a set of R2, R5, R7, R8

and R9 problems. In particular, we show that it is robust
to changes in training and test distribution (Section VII).

II. RELATED WORK

The seminal work of Hsu et al. [13] provides a crisp analysis
of the shortcomings of uniform sampling techniques in the
presence of artifacts such as narrow passages. This has led to
a plethora of non-uniform sampling approaches that densify
selectively [6–10].

Adaptive sampling in the context of roadmaps aims to exploit
structure of the environment to place samples in promising
areas. A number of works exploited structure of the workspace

to achieve this. While some of them attempt to sample between
regions of collision to identify narrow passages [6, 14–18],
others sample near or on the obstacles [19, 20]. There are
approaches that divide the configuration space into regions and
either select different region-specific planning strategies [21]
or use entropy of samples in a particular region to refine
sampling [22]. Other methods try to model the free space to
speed up planning [23–25]. While these techniques are quite
successful in a large set of problems, they can place samples
in regions where an optimal path is unlikely to traverse.

A different class of solutions look at adapting sampling
distributions online during the planning cycle. This requires
a trade-off between exploration of the configuration space
and exploitation of the current best solution. Preliminary
approaches define a utility function to do so [26, 27] or use
online learning [10]; however these are not amenable to using
priors. Diankov and Kuffner [28] employs statistical tech-
niques to sample around a search tree. Zucker et al. [29], Kuo
et al. [30] formalize sampling as a model-free reinforcement
learning problem and learn a parametric distribution. Since
these problems are non i.i.d learning problems, they do require
interactive learning and do not enjoy the strong guarantees
of supervised learning.

There has been a lot of recent effort on finding low dimen-
sional structure in planning [31]. In particular, generative
modeling tools like variational autoencoders [32] have been
used to great success [33–37]. We base our work on Ichter
et al. [11] where a CVAE is trained to learn the shortest path
distribution.

III. PROBLEM FORMULATION

Given a database of prior worlds, the overall goal is to learn
a policy that predicts a roadmap which in turn is used by a
search algorithm to efficiently compute a high quality feasible
path. Let X denote a d−dimensional configuration space. Let
Xobs be the portion in collision and Xfree = X \Xobs denote
the free space. Let a path ξ : [0, 1] → X be a continuous



mapping from index to configurations. A path ξ is said to
be collision free if ξ(τ) ∈ Xfree for all τ ∈ [0, 1]. Let c(ξ)
be a cost functional that maps ξ to a bounded non-negative
cost [0, cmax]. Moreover, we set c(∅) = cmax. We define a
motion planning problem Λ = {xs, xg,Xfree} as a tuple of
start configuration xs ∈ Xfree, goal configuration xg ∈ Xfree

and free space Xfree. Given a problem, a path ξ is said to
be feasible if it is collision free, ξ(0) = xs and ξ(1) = xg.
Let Ξfeas denote the set of all feasible paths. We wish to
solve the optimal motion planning problem by finding a
feasible path ξ∗ that minimizes the cost functional c(.), i.e.
c(ξ∗) = infξ∈Ξfeas

c(ξ).

We now embed the problem on a graph G = (V,E) such
that each vertex v ∈ V is an element of v ∈ X . The graph
follows a connectivity rule expressed as an indicator function
Link : X × X → {0, 1} to denote if two configurations
should have an edge1. The weight of an edge c(u, v) is the
cost of traversing the edge. We reuse ξ to denote a path on
the graph.

We introduce a couple graph operations. Let |G| denote
the cardinality of the graph, i.e. the size of |V |2. We
use the notation G

+←− X to compactly denote insertion
of a new set of vertices X , i.e. V ← V ∪ X , E ←
E ∪ {(u, v) | u ∈ X, Link (u, v) = 1}.
A graph search algorithm ALG is given a graph G and a
planning problem Λ. First, it adds the start goal pair to the
graph, i.e G′ = G

+←− {xs, xg}. It then collision checks edges
against Xfree till it finds the shortest feasible path ξ∗ which
is then returned. Hence, the cost of such a path can be found
by evaluating c(ALG(G,Λ)). If ALG is unable to find any
feasible path, it returns ∅ which corresponds to cmax.
Definition 1 (Dense Graph). We assume we have a dense
graph Gdense = (Vdense, Edense) that is sufficiently large to
connect the space i.e. for any plausible planning problem, it
contains a sufficiently low cost feasible path.

Henceforth, we care about competing with Gdense. We
reiterate that searching this graph, ALG(Gdense,Λ), is too
computationally expensive to perform online.

We wish to learn a mapping from features extracted from
the problem to a sparse subgraph of Gdense. Let y ∈ Rm
be a feature representation of the planning problem. Let
π(Gdense, y) be a subgraph predictor oracle that maps the
feature vector to a subgraph G ⊂ Gdense, such that |G| ≤ N .
We wish to solve the following optimization problem:
Problem 1 (Optimal Subgraph Prediction). Given a joint
distribution P (Λ, y) of features and problems, and a dense
graph Gdense, compute a subgraph predictor oracle π that
minimizes the ratio of the cost of the shortest feasible path
in the subgraph to the dense graph:

π∗ = arg min
π∈Π

E(Λ,y)∼P (Λ,y)

[
c(ALG(π(Gdense, y),Λ))

c(ALG(Gdense,Λ))

]
(1)

1Note this does not involve collision checking. We consider undirected
graphs for simplicity. However, it easily extends to directed graphs.

2Alternatively we can also use the size of |E|

IV. FRAMEWORK FOR PREDICTING ROADMAPS

We now present a framework for training graph predicting
oracles as illustrated in Fig. 2(a). This is a generalization of the
approach presented in [11]. The framework applies three main
approximations. First, instead of predicting a subgraph G ⊂
Gdense, we learn a mapping that directly predicts states x ∈ X
in continuous space.3 Secondly, instead of solving a structured
prediction problem, we learn an i.i.d sampler that will be
invoked repeatedly to get a set of vertices. These vertices
are then connected according to an underlying connection
rule, such as k-NN, to create a graph. Thirdly, we compose
the sampled graph with a constant sparse graph Gsparse ⊂
Gdense, |Gsparse| ≤ N . This ensures that the final predicted
graph has some minimal coverage. 4

The core component of the framework is a Conditional
Variational Auto-encoder (CVAE) [38] which is used for
approximating the desired sample distribution. CVAE is an
extension of a traditional variational auto-encoder [12] which
is a directed graphical model with low-dimensional Gaussian
latent variables. CVAE is a conditional graphical model which
makes it relevant for our application where conditioning
variables are features of the planning problem. We provide a
high level description for brevity, and refer the reader to [32]
for a comprehensive tutorial.

Here x ∈ X is the output random variable, z ∈ RL is the latent
random variable and y ∈ Rm is the conditioning variable. We
wish to learn two deterministic mappings - an encoder and a
decoder. An encoder maps (x, y) to a mean and variance of a
Gaussian qφ(z|x, y) in latent space, such that it is “close” to an
isotropic Gaussian N (0, I). The decoder maps this Gaussian
and y to a distribution in the output space pθ(x|z, y). This is
achieved by maximizing the following objective L (x, y; θ, φ):

−DKL (qφ(z|x, y) || N (0, I)) +
1

L

L∑
l=1

log pθ(x|y, z(l)) (2)

Note that the encoder is needed only for training. At test time,
only the decoder is used to map samples from an isotropic
Guassian in the latent space to samples in the output space.

We train the CVAE by passing in a dataset D = {Xi, yi}Di=1.
yi is the feature vector (conditioning variable) extracted from
the planning problem Λi. Xi is the desired set of nodes
extracted from the dense graph Gdense that we want our
learner to predict. Hence we train the model by maximizing
the following objective.

R(D; θ, φ) =
1

|D|

|D|∑
i=1

|Xi|∑
j=1

L (xj , yi; θ, φ) (3)

3For cases where a subgraph is preferred, e.g. Gdense lies on a constraint
manifold, one can design a projection operator P : X → Vdense

4Since Gdense is a Halton graph, we use the first N Halton sequences.
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Fig. 3: (a) The training input generated by SHORTESTPATH. (b) Failure of SHORTESTPATH model to route through gaps (c) Another failure of the model
due to unexpected obstacles (d) The training input generated by LEGO. Diverse shortest paths are generated followed by extraction of bottleneck nodes.

A. General Train and Test Procedure

To summarize, the overall training framework is as follows:

1) Load a database of planning problems Λi and corre-
sponding feature vectors yi.

2) For each Λi, extract relevant nodes from
the dense graph Gdense by invoking Xi =
EXTRACTNODES(Λi, Gdense).

3) Feed dataset D = {Xi, yi}Di=1 as input to CVAE.

4) Train CVAE and return learned decoder pθ(x|y, z).

At test time, given a planning problem Λ, the graph predicting
oracle π(Gdense, y) performs the following set of steps:

1) Extract feature vector y from planning problem Λ.

2) Sample N nodes using decoder pθ(x|y, z).

3) Connect nodes to create a graph G. Compose sampled
graph with a constant sparse graph G← G⊕Gsparse.

The focus of this work is on examining variants of the the
node extraction function X = EXTRACTNODES(Λ, Gdense).
While the parameters of the CVAE are certainly relevant
(discussed in Appendix A), in this paper we ask the question:

What is a good input X to provide to the CVAE?

To that end, we explore the following schemes:

1) SHORTESTPATH: Extract nodes Xsp belonging to the
shortest path. This is the baseline approach (Section V).

2) BOTTLENECKNODE: Extract nodes Xbn that correspond
to bottlenecks along the shortest path (Section VI-A).

3) DIVERSEPATHSET: Extract nodes Xdiv belonging to
multiple diverse shortest paths (Section VI-B).

4) LEGO: Extract nodes Xlego that correspond to bottle-
necks along multiple diverse diverse shortest paths. This
is our proposed approach (Section VI-C).

V. THE SHORTESTPATH (ICHTER ET AL. [11]) PROCEDURE

We examine the scheme applied in [11] of using nodes
belonging to the shortest path on the dense graph as input
for training the CVAE. The rationality for this scheme is
that the distribution of states belonging to the shortest path
might lie on a manifold that can be captured by the latent

space of the CVAE. This hypothesis is validated across many
high-dimensional planning domains.

We argue that the presented results should not be entirely
surprising. The intrinsic difficulty of a planning problem stems
from having to search in multiple potential homotopy classes
to find a feasible high quality solution. This often manifests in
problems involving mazes, bugtraps or narrow passages where
the search has to explore and backtrack frequently. Simply
increasing the dimension of the problem does not necessarily
render it difficult. On the contrary, since the volume of free
space increases substantially, there is often an abundance of
feasible paths. The challenge, of course, is to find a manifold
on which such paths lie with high probability. This is where
we found the CVAE to be critical - it learns to interpolate
between the start and goal along a low dimensional manifold.

However, we are interested in more difficult problems where
such interpolations would break down. Based on extensive
evaluations of this SHORTESTPATH scheme, we were able to
identify two concrete vulnerabilities:

1) Failure to route through gaps: Fig. 3(b) shows the
output of the CVAE when there is a gap through which
the search has to route to get to the goal. The model
gets stuck in a poor local minimum between linearly
interpolating start-goal and routing through the gap since
the network is not expressive enough to map the feature
vector to such a path. This is tantamount to burdening
the sampler to solve the planning problem.

2) Presence of unexpected obstacles in test data: Fig. 3(c)
shows the output of the CVAE when there are small,
unexpected obstacles in the test data which were not
present in the training data. The learned distribution
samples over this obstacle as it only predicts what it
thinks is the shortest path. Even if we were to have such
examples in the training data, unless the feature extractor
detects such obstacles, the problem remains.

VI. APPROACH

In this section, we present LEGO (Leveraging Experience
with Graph Oracles), an algorithm to train a CVAE to predict
sparse yet high quality roadmaps. We do so by tackling head-
on the challenges identified in in Section IV. Firstly, we
recognize that the learner does not have to directly predict the
shortest path. Instead, we train it to predict only bottleneck



Algorithm 1: BOTTLENECKNODE

Input : Planning problem Λ, Bottleneck tolerance ε
Dense path ξ∗dense, Sparse graph Gsparse

Output : Bottleneck nodes Vbn

1 Ginf ← Gsparse ⊕ ξ∗dense ; . Add to sparse graph
2 η ← 1;
3 while c(ALG(Ginf ,Λ)) ≤ (1 + ε)c(ξ∗dense) do
4 η ← η + δη ; . Increase inflation
5 for (u, v) ∈ Einf \ Esparse do
6 c(u, v)← ηc(u, v) ; . Inflate added edges

7 ξ∗inf ← ALG(Ginf ,Λ) ; . Shortest inflated path
8 Vbn ← ξ∗dense ∩ ξ∗inf ; . Bottleneck nodes
9 return Vbn;

nodes that can assist the underlying search in finding a near-
optimal solution. Secondly, the roadmap must be robust to
prediction errors of the learner. We safeguard against this by
training the learner to predict a diverse set of paths with the
hope that at-least one of them is feasible.

A. Bottleneck Nodes

We begin by noting that Gsparse has a uniform coverage over
the entire configuration space. Hence, the learner only has
to contribute a critical set of nodes that allow Gsparse to
represent paths that are near-optimal with respect to the path
in Gdense. We call these bottleneck nodes as they correspond
to regions that are difficult for a uniform sampler to cover.
We define Xbn = BOTTLENECKNODE(Λ, Gdense) as:
Definition 2 (Bottleneck Nodes). Given a dense graph Gdense,
find the smallest set of nodes which in conjunction with a
sparse subgraph Gsparse contains a near-optimal path, i.e.

arg min
V⊂Vdense

|V |

s.t.
c(ALG(Gsparse ⊕ V,Λ))

c(ALG(Gdense,Λ))
≤ 1 + ε

(4)

Here G⊕ V ′ represents a merge operation, i.e. V ← V ∪ V ′,
E ← E ∪ {(u, v) | u ∈ V ′, (u, v) ∈ Edense}.
The optimization Section 4 is combinatorially hard. We
present an approximate solution in Algorithm 1. We use the
optimal path ξ∗dense on the dense graph and create an inflated
graph Ginf(η) by composing Gsparse ⊕ ξ∗dense and inflating
weights of newly added edges by η (Line 6). The idea is to
disincentivize the search from using any of the newly added
edges. This inflation factor is increased till a near-optimal
path can no longer be found (Lines 3-6). At this point, the
additional vertices that the shortest path on this inflated path
pass through are essential to achieve near-optimality. This is
formalized by the following guarantee:
Proposition 1 (Bounded bottleneck edge weights). Let
Ebn ← ξ∗inf \Esparse be the chosen bottleneck edges, E∗bn be
the optimal bottleneck edges and ξ∗dense be the optimal path
on Gdense.∑

ei∈Ebn

c(ei) ≤
∑

ei∈E∗
bn

c(ei) +
(1 + ε)c(ξ∗dense)

η
(5)

Proof: (Sketch) Let V ∗bn be the optimal bottleneck nodes
and E∗bn be the optimal bottleneck edges. Let ξ∗bn be the path
returned by ALG(Gsparse ⊕ V ∗bn,Λ). From Definition 2, the
following holds:

∑
ei∈E∗

bn

c(ei) +
∑

ei∈ξ∗bn\E
∗
bn

c(ei) ≤ (1 + ε)c(ξ∗dense)

∑
ei∈ξ∗bn\E

∗
bn

c(ei) ≤ (1 + ε)c(ξ∗dense)

Since ξ∗inf is the shortest path on the inflated graph, we have:∑
ei∈Ebn

c(ei) + η
∑

ei∈ξ∗inf\Ebn

c(ei)

≤ η
∑

ei∈E∗
bn

c(ei) +
∑

ei∈ξ∗bn\E
∗
bn

c(ei)

Putting the two inequalities together we have:

η
∑

ei∈ξ∗inf\Ebn

c(ei) ≤ η
∑

ei∈E∗
bn

c(ei) +
∑

ei∈ξ∗bn\E
∗
bn

c(ei)

∑
ei∈ξ∗inf\Ebn

c(ei) ≤
∑

ei∈E∗
bn

c(ei) +

∑
ei∈ξ∗bn\E

∗
bn
c(ei)

η∑
ei∈ξ∗inf\Ebn

c(ei) ≤
∑

ei∈E∗
bn

c(ei) +
(1 + ε)c(ξ∗dense)

η

Fig. 4 illustrates the samples generated by (a) SHORTESTPATH
and (b) LEGO trained with samples from BOTTLENECKN-
ODE; and the successful routing through narrow passages
using samples from LEGO.

B. Diverse PathSet

In this training scheme, we try to ensure the roadmap is
robust to errors introduced by the learner. One antidote to
this process is diversity of samples. Specifically, we want the
roadmap to have enough diversity such that if the predicted
shortest path is in fact infeasible, there are low cost alternates.

We set this up as a two player game between a planner and
an adversary. The role of the adversary is to invalidate as
many shortest paths on the dense graph Gdense as possible
with a fixed budget of edges that it is allowed to invalidate.
The role of the planner is to find the shortest feasible path on
the invalidated graph and add this to the set of diverse paths
Ξdiv. The function Xdiv = DIVERSEPATHSET(Λ, Gdense)
then returns nodes belonging Ξdiv. We formalize this as:
Definition 3 (Diverse PathSet). We begin with a graph G0 =
Gdense. At each round i of the game, the adversary chooses
a set of edges to invalidate:

E∗i = arg max
Ei⊂E,|Ei|≤`

c(ALG(Gi−1 	 Ei,Λ)) (6)



Algorithm 2: DIVERSEPATHSET

Input : Planning problem Λ, Pathset size k,
Dense graph Gdense, Sparse graph Gsparse

Output : Diverse pathset Ξdiv

1 G← Gdense;
2 Ξdiv ← ∅;
3 for i = 1, · · · , k do
4 Ξ← ALGL(G,Λ) ; . L-shortest paths
5 Ei ← ∅,Ξinv ← ∅;
6 while |Ei| < ` do
7 Ξ← {ξ | ξ ∈ Ξ, ξ ∩ Ei = ∅};
8 for j = |Ei| , · · · , ` do
9 ej ← arg max

e∈E
min

ξ∈Ξ,e/∈ξ
c(ξ) ; . Greedy

10 Ei ← Ei ∪ {ej} ; . Add edge to set
11 Ξj ← {ξ ∈ Ξ | ej ∈ ξ};
12 Ξinv ← Ξinv ∪ Ξj ; . Invalidate paths
13 Ξ← Ξ \ Ξj ;

14 Esc ← SETCOVER(Ξinv) ; . Greedy cover
15 if |Esc| ≤ |Ei| then
16 Ei ← Esc ; . Use better cover

17 G← G	 Ei ; . Remove edges
18 ξi ← ALG(G,Λ) ; . New shortest path
19 Ξdiv ← Ξdiv ∪ ξi ; . Add to diverse pathset

20 return Ξdiv;

and the graph is updated Gi = Gi−1 	 E∗i . The planner
choose the shortest path ξi = ALG(Gi,Λ)) which is added
to the set of diverse paths Ξdiv.

The optimization problem (6) is similar to a set cover problem
(NP-Hard [39]) where the goal is to select edges to cover as
many paths as possible. If we knew the exact set of paths to
cover, it is well known that a greedy algorithm will choose a
near-optimal set of edges [39]. We have the inverse problem
- we do not know how many consecutive shortest paths can
be covered with a budget of ` edges.

Algorithm 2 describes the procedure. We greedily choose a
set of edges to invalidate as many consecutive shortest paths
till we exhaust our budget (Lines 8-13). We then apply greedy
set cover (Line 14). If it leads to a better solution, we continue
repeating the process. At termination, we ensure:
Proposition 2 (Near-optimal Invalidated EdgeSet). Let Ξinv

be the contiguous set of shortest paths invalidated by Algo-
rithm 2 using a budget of `. Let `∗ be the size of the optimal
set of edges that could have invalidated Ξinv.

` ≤ (1 + log |Ξinv|)`∗ (7)

Proof: (Sketch) We briefly explain the equivalence to a set
cover problem. Each path in Ξinv corresponds to an element
that has to be covered. Each edge e ∈ Edense corresponds to
a set of paths in Ξinv, where each path in the set contains the
edge. Invalidating the edge invalidates all paths in the set.

Line 14 invokes a greedy set cover algorithm which at every
iteration chooses the edge which covers the largest number of
uncovered paths. Let `greedy be the number of edges selected
by the greedy algorithm, and `∗ be the optimal. From [39],

Algorithm 3: LEGO
Input : Planning problem Λ, Bottleneck tolerance ε,

Pathset
size k, Dense graph Gdense, Sparse graph Gsparse

Output : LEGO nodes Vlego

1 Ξdiv ← DIVERSEPATHSET(Λ, k,Gdense, Gsparse);
2 Vlego ← ∅;
3 while Ξdiv 6= ∅ do
4 ξ∗ ← arg min

ξ∈Ξdiv

c(ξ) ; . Pick diverse path

5 Ξsparse ← ALGL(Gsparse,Λ);
6 Ξsparse ← {ξ | ξ ∈ Ξsparse, c(ξ) ≤ (1 + ε)c(ξ∗)};
7 Einv ← SETCOVER(Ξsparse); . Edges to remove
8 Gsparse ← Gsparse 	 Einv ; . Invalidate paths
9 Vbn ← BOTTLENECKNODE(Λ, ε, ξ∗, Gsparse);

10 Vlego ← Vlego ∪ Vbn ; . Add to LEGO nodes

11 return Vlego;

(a) (b) (c) (d)

Fig. 4: Comparison of samples (distribution illustrated as heatmap) generated
by SHORTESTPATH (a, c) and DIVERSEPATHSET (b, d) in different
environments. In the first environment (left), LEGO (b) is trained with
samples from BOTTLENECKNODE. In the second environment (right), LEGO
(d) is trained with samples from DIVERSEPATHSET. In both instances,
SHORTESTPATH fails to find a solution.

we have the following near-optimality guarantee:

`greedy ≤ (1 + log |Ξinv|)`∗

If `greedy ≤ `, i.e. we have budget remaining, we continue
adding edges that can only invalidate more paths in Lines 8-13.
This continues till the budget is exhausted.

Fig. 4 illustrates the samples generated by (a) SHORTESTPATH
and (b) LEGO trained with samples from DIVERSEPATHSET;
and the robustness to unexpected obstacles exhibited by
LEGO.

C. Combining Diversity with Bottleneck Extraction

We present LEGO in Algorithm 3 which combines the
characteristics of BOTTLENECKNODE and DIVERSEPATHSET
to extract a set of diverse bottleneck nodes. We first find a
set of diverse paths on the dense graph (Line 1). We then
iterate over each path, and adversarially invalidate edges of the
sparse graph to ensure it does contain a feasible shorter path
(Line 4-8). The bottleneck nodes for this path are extracted
and added to the set of nodes to be returned (Line 9).



VII. EXPERIMENTAL RESULTS

In this section we evaluate the performance of LEGO
on various problem domains and compare it against other
samplers. We consider samplers that do not assume offline
computation or learning such as Medial-Axis PRM (MAPRM)
[6, 14], Randomized Bridge Sampler (RBB) [15], Workspace
Importance Sampler (WIS) [16], a Gaussian sampler, GAUS-
SIAN [20], and a uniform Halton sequence sampler, HALTON
[4]. Additionally, we also compare our framework against the
state-of-the-art learned sampler SHORTESTPATH [35] upon
which our work is based.

a) Evaluation Procedure: For a given sampler and a planning
problem, we invoke the sampler to generate a fixed number
of samples. We then evaluate the performance of the samplers
on three metrics: a) sampling time b) success rate in solving
shortest path problem and c) the quality of the solution
obtained, on the graph constructed with the generated samples.

b) Problem Domains: To evaluate the samplers, we consider a
spectrum of problem domains. The R2 problems have random
rectilinear walls with random narrow passages (Fig. 6(a)).
These passages can be small, medium or large in width. The
n-link arms are a set of n line-segments fixed to a base moving
in an uniform obstacle field (Fig. 6(b)). The n-link snakes are
arms with a free base moving through random rectilinear walls
with passages (Fig. 6(c)). Finally, the manipulator problem has
a 7DoF robot arm [40] manipulating a stick in an environment
with varying clutter (Fig. 6(d)). Two variants are considered -
constrained (R7), when the stick is welded to the hand, and
unconstrained, when the stick can slide along the hand (R8).

c) Experiment Details: For the learned samplers SHORTEST-
PATH and LEGO, we use 4000 training worlds and 100 test
worlds. Dense graph is an r−disc Halton graph [5]: 2000
vertices in R2 to 30, 000 vertices in R8. The CVAE was
implemented in TensorFlow [41] with 2 dense layers of 512
units each. Input to the CVAE is a vector encoding source
and target locations and an occupancy grid. Training time
over 4000 examples ranged from 20 minutes in R2 to 60
minutes in R8 problems. At test time, we time-out samplers
after 5 sec. The code is open sourced5 with more details in
[42].

A. Performance Analysis

a) Sampling time: Table I reports the average time each
sampler takes for 200 samples across 100 test instances.
SHORTESTPATH and LEGO are the fastest. MAPRM and
RBB both rely on heavy computation with multiple collision
checking steps. WIS, by tetrahedralizing the workspace and
identifying narrow passages, is relatively faster but slower than
the learners. Unfortunately, some of the baselines time-out
on manipulator planning problem due to expense of collision
checking.

5https://github.com/vernwalrahul/LearningRoadmaps

b) Success Rate: Table II reports the success rates (95%
confidence intervals) on 100 test instances when sampling
500 vertices. Success rate is the fraction of problems for
which the search found a feasible solution. LEGO has the
highest success rate. The baselines are competitive in R2, but
suffer for higher dimensional problems.

c) Normalized Path Cost: This is the ratio of cost of the
computed solution w.r.t. the cost of the solution on the
dense graph. Fig. 6 shows the normalized cost for HALTON,
SHORTESTPATH and LEGO- these were the only baselines
that consistently had bounded 95% confidence intervals (i.e.
when success rate is ≥ 60%). SHORTESTPATH has the lowest
cost, however LEGO is within 10% bound of the optimal.

B. Observations

We report on some key observations from Table II and Fig. 6.

O 1. LEGO consistently outperforms all baselines

As shown in Table II, LEGO has the best success rate (for
500 samples) on all datasets. The second row in Fig. 6 shows
that LEGO is within 10% bound of the optimal path.
O 2. LEGO places samples only in regions where the optimal
path may pass.

Fig. 5 shows samples generated by various baseline algo-
rithms on a 2D problem. The heuristic baselines use various
strategies to identify important regions - MAPRM finds
medial axes, RBB finds bridge points, GAUSSIAN samples
around obstacles, WIS divides up space non-uniformly and
samples accordingly. However, these methods places samples
everywhere irrespective of the query. SHORTESTPATH takes
the query into account but fails to find the gaps. LEGO does
a combination of both – it finds the right gaps.
O 3. LEGO has a higher performance gain on harder
problems (narrow passages) as it focuses on bottlenecks.

Table II shows how success rates vary in 2D problems with
small / medium / large gaps. As the gaps gets narrower, LEGO
outperforms more dominantly. The BOTTLENECKNODE com-
ponent in LEGO seeks the bottleneck regions (Fig. 4b).

For manipulator planning R8 problems, when stick is uncon-
strained, LEGO and SHORTESTPATH are almost identical. We
attribute this to such problems being easier, i.e. the shortest
path simply slides the stick out of the way and plans to the
goal. When the stick is constrained, LEGO does far better.
Fig. 6(d) shows that LEGO is able to sample around the
table while SHORTESTPATH cannot find this path.
O 4. LEGO is robust to a certain degree of train-test
mismatch as it encourages diversity.

Fig. 7 shows the success rate of learners on a 2D test
environment that has been corrupted. Environment 1 is less
corrupted than environment 2. Fig. 7(a) shows that on envi-
ronment 1, LEGO is still the best sampler. SHORTESTPATH
(Fig. 7(c)) ignores the corruption in the environment and
fails. LEGO (Fig. 7(d)) still finds the correct bottleneck.

https://github.com/vernwalrahul/LearningRoadmaps


TABLE I: Average time (sec.) by sampling algorithms to generate 200 samples over 100 planning problems

Non-Learned Samplers Learned Samplers
HALTON MAPRM RBB GAUSSIAN WIS SHORTESTPATH LEGO

Point Robot (2D) 0.0036 0.53 0.22 0.02 0.25 0.006 0.006
N-link Arm (3D) 0.0058 − 23.96 1.95 0.36 0.016 0.016
N-link Arm (7D) 0.0071 − 37.24 3.77 1.12 0.017 0.017
Snake Robot (5D) 0.0069 39.56 142.21 3.43 0.54 0.013 0.013
Snake Robot (9D) 0.0074 40.01 180.43 8.71 2.11 0.017 0.017
Manipulator (8D) 0.01 − − 3.33 − 0.018 0.018

TABLE II: Success Rates of different algorithms on 100 trials over different datasets (reported with a 95% C.I.)

Non-Learned Samplers Learned Samplers
HALTON MAPRM RBB GAUSSIAN WIS SHORTESTPATH LEGO

2D Point Robot Planning
2D Large (easy) 0.73± 0.08 0.73± 0.08 0.74± 0.09 0.65± 0.09 0.78± 0.08 0.86± 0.07 0.97± 0.03
2D Medium 0.48± 0.08 0.63± 0.09 0.61± 0.09 0.48± 0.10 0.63± 0.09 0.69± 0.09 0.89± 0.06
2D Small (hard) 0.36± 0.09 0.53± 0.09 0.48± 0.08 0.32± 0.09 0.52± 0.09 0.59± 0.09 0.83± 0.07

N-Link Arm
3D 0.39± 0.09 − 0.54± 0.09 0.46± 0.10 0.52± 0.10 0.61± 0.09 0.74± 0.08
7D 0.29± 0.09 − 0.46± 0.09 0.41± 0.09 0.46± 0.09 0.57± 0.10 0.71± 0.08

N-Link Snake Robot
5D 0.41± 0.09 0.42± 0.09 0.48± 0.10 0.41± 0.09 0.50± 0.10 0.77± 0.08 0.84± 0.07
9D 0.49± 0.09 0.45± 0.09 0.52± 0.10 0.51± 0.10 0.53± 0.09 0.82± 0.07 0.86± 0.07

Manipulator Arm Planning
Unconstrained (8D) 0.24± 0.09 − − − − 0.81± 0.08 0.82± 0.07
Constrained (7D) 0.09± 0.05 − − − − 0.58± 0.09 0.70± 0.09

(a) MAPRM (b) RBB (c) GAUSSIAN (d) WIS (e) SHORTESTPATH (f) LEGO
Fig. 5: Comparison of samples (green) generated by all baseline algorithms on a 2D problem, planning from start (blue) to goal (red).

Fig. 7(b) shows that all learners are worse than HALTON.
SHORTESTPATH (Fig. 7(e)) densifies around a particular
constrained region while LEGO (Fig. 7(e)) still finds a path
due to the DIVERSEPATHSET component sampling in multiple
bottleneck regions.

VIII. DISCUSSION

We present a framework for training a generative model to
predict roadmaps for sampling-based motion planning. We
build upon state-of-the-art methods that train the CVAE using
the shortest path as target input. We identify important failure
modes such as complex obstacle configurations and train-
test mismatch. Our algorithm LEGO directly addresses these
issues by training the CVAE using diverse bottleneck nodes
as target input. We formally define these terms and provide
provable algorithms to extract such nodes. Our results indicate
that the predicted roadmaps outperform competitive baselines
on a range of problems.

Using priors in planning is a double edged sword. While
one can get astounding speed ups by focusing search on
a tiny portion of C-space [11], any problem not covered

in the dataset can lead to catastrophic failures. This is
symptomatic of the fundamental problem of over-fitting in
machine learning. While one could ensure the training data
covers all possible environments [43], an algorithmic solution
is to explore regularization techniques for planning. We argue
DIVERSEPATHSET can be viewed as a form of regularization.

We can also include a more informed conditioning vector that
captures the state of the search, e.g., the length of the current
shortest path. This is similar to Informed RRT* [44]. Finally,
we wish to scale to problems with varying workspace where
a global planner guides the sampler to focus on relevant parts
of the workspace [13, 45].
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Fig. 6: Comparisons of SHORTESTPATH against LEGO on different problem domains. In each problem domain (column), success rate (top), normalized
path lengths (middle) and solutions determined on the roadmaps constructed using samples generated by the two samplers (bottom) are shown.
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Fig. 7: Comparison of samplers on corrupted environments, i.e., different
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only squares. Output of SHORTESTPATH and LEGO on environment 1 (c,d)
and environment 2 (e,f).
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APPENDIX A
CVAE FRAMEWORK

We refer the reader to [32] for technical details and a
comprehensive tutorial on CVAE. In Section A-A we describe
the CVAE architecture implemented to train LEGO and
SHORTESTPATH algorithms. In Sections A-B and A-C, we
study two parameters that determine the performance of the
CVAE generative model.

A. Architecture

The entire CVAE module (Fig. 8) takes as input the training
samples X , which in case of LEGO are the samples in
bottleneck regions and along diverse paths. Additionally, the
CVAE also takes as input a vector of external features y,
upon which the generative model is also conditioned upon. In
the problems we consider, these features include information
regarding the environment such as the poses of the obstacles
and the start-goal pair. A standard CVAE model consists of an
encoder and a decoder, often represented by neural networks.
The input samples and the external features are used to train
the encoder and the decoder networks end-to-end.

During training, The encoder network takes as input the
high-dimensional vector of features including the training
sample and the other external features and encodes it into
a low-dimensional latent variable vector. The latent variable
is then fed into the decoder network along with the vector
of external features as an input which outputs a sample in
the configuration space. This sample output by the decoder
is used to minimize an objective function which aims to
fundamentally reduce the divergence between the probability
distribution of the training samples and the learned generative
model to be able to closely reconstruct the training samples set.
During testing, only the decoder network is used to generate
the required samples. The decoder takes as input a latent
variable sampled from standard normal distribution as well
as the vector of external features to generate useful samples.

In our implementation of the CVAE, both encoder and decoder
networks have two fully connected hidden layers with 512
unites each. The specifics of the external features used in
each of the planning problems considered in Section VII are
discussed in Section B-A. The behavior of the generative
model, in addition to the features used, also depends on
certain parameters. We study the effect of these parameters and
their design choices in our implementation in the following
subsections.

B. Dimensionality of the Latent Variable

The latent variable captures the information available to the
model through the training examples in a lower dimensional
latent space. The dimensionality of the latent variable denotes
how efficiently the model can capture the sources of variability
required to regenerate data similar to the training examples.
Theoretically, a model with larger latent dimension is at

Fig. 8: A simple illustration of the CVAE framework setup for training with
X and y together denoting the input to the CVAE.

least as good as a model with lower latent dimension.
However, in practice, when the latent variable dimension
is high, it becomes computationally expensive for methods
like stochastic gradient descent to reduce the KL divergence
between the true and the approximated distributions over
the latent variables conditioned on the training examples.
Fig. 9 shows the behaviors exhibited by the trained generative
model for different latent variable dimensions. We choose
latent variable dimension of 3 for R2, R5 problems and 5
for R7, R8 and R9 problems.

(a) (b) (c)
Fig. 9: Samples generated by CVAE trained with different latent variable
dimensions (a) 1 (b) 3 and (c) 7.

C. Regularization Parameter

Although VAEs are generally devoid of regularization param-
eters, one could introduce the parameter in modifying the
objective function the CVAE aims to minimize when learning
the generative model. The objective function in a CVAE is
given by:

Reconstruction Loss + λ× KL Divergence (8)

The reconstruction loss ensures that the training data can be
explained with the data generated by the model and therefore
minimizing it ensures proper reconstruction of the training
examples. On the other hand, the second term captures the
divergence between the prior distribution over latent variable
and the posterior given the training examples. Minimizing it
ensures that the two distributions are similar. When the value
of λ is zero, the behavior of the corresponding VAE is similar
to a traditional autoencoder in its capability to reconstruct
the training examples. When the value of λ is equal to 1, the



objective function is as in a VAE. However this often leads
to over-pruning [46] where many of the dimensions of the
latent variable are ignored in an attempt to reduce the KL
divergence. By tuning the value of λ between 0 and 1, one
could weigh the two objectives appropriately to obtain the
desired generative model behavior (Fig. 10).

(a) (b) (c)
Fig. 10: Example learned distributions for the narrow passage problem for
different values of regularization paramer (λ), (a) 2× 10−8 (b) 2× 10−2

(c) 2× 10−4 (chosen value of λ).

APPENDIX B
EXPERIMENTS

In this section, we discuss the offline computation involved
in training the CVAE for different planning environments
considered in Section VII.

A. Training Procedure

a) 2D Point Robot Planning: The training data consisted of
20 randomly generated environments as shown in Fig. 11
with 20 planning problems (start-goal pairs) in each of the
environments. The environments were randomized in positions
of the vertical and horizontal walls and the narrow passages
through them. The CVAE was conditioned upon a vector of
102 features which included the start-goal pair (4 features) as
well the 10× 10 occupancy grid (100 features). The dataset
generation took 4-5 hours while the training time was around
25 minutes. The CVAE was trained using samples from
Gdense with 3000 samples. The CVAE was trained to sample
configurations (in R2) of the point robot.

(a) (b) (c)

Fig. 11: Environments sampled in R2 to train the CVAE.

b) N-Link Arm Planning: The training procedure for the robot
in R3, R5 consisted of a Gdense with 6000 samples which
was used to plan for 20 planning problems in each of 20
randomly generated 2D environments. Fig. 12 visualizes some
of the environments sampled to train the CVAE. The red and
blue positions show the start and goal states respectively. The
environment has randomly placesd obstacles. The CVAE was

conditioned on a vector of features which included the start-
goal pair as well the 10× 10 occupancy grid (100 features).
The dataset generation took 6-7 hours while the training time
was close to 30 minutes.

(a) (b) (c)

Fig. 12: Environments sampled in R3 to train the CVAE.

c) Snake Robot Planning: For R5, the training procedure was
similar to that in the R2 problems. The training procedure
for the robot in R9 consisted of a Gdense with 6000 samples
which was used to plan for 20 planning problems in each of
20 randomly generated 2D environments. Fig. 13 visualizes
some of the environments sampled to train the CVAE. The red
and blue positions show the start and goal states respectively.
The environments were modified in the wall being horizontal
or vertical, the offset in its position, and the position of
the narrow passage through it. The CVAE was conditioned
on a vector of 118 features which included the start-goal
pair (18 features) as well the 10× 10 occupancy grid (100
features). The dataset generation took 6-7 hours while the
training time was close to 30 minutes. The CVAE was trained
to sample configurations of the snake robot that included the
base location as well as the revolute joint angles between
each of the links.

(a) (b) (c)

Fig. 13: Environments sampled in R9 to train the CVAE.

d) Manipulator Arm Planning: The training data consisted
of 20 random environments where the obstacles in the
environment were arbitrarily repositioned. In each of the
randomly generated environment, 50 planning problems were
considered as an input to the train the CVAE model. Fig. 14
visualized three such environments, where the positions of
the table and that of the obstacle on the table are modified
along with start and goal configurations. The CVAE in the
constrained problem was conditioned on a vector of 466

features which included the start and goal configurations
(14 features) and the poses of the table and the obstacle
represented as 4 × 4 homogeneous matrices (32 features).
The dataset was generated in 7-8 hours while the training

648 in the unconstrained problem since the configuration of the robot
includes an additional degree of freedom.



took around an hour. Samples from a Gdense with 30,000
configurations were used to train the CVAE. The CVAE
learned to sample the robot configurations which included
the joint angles at the seven revolute joints of the arm in the
constrained example. The unconstrained R8 example consisted
of an additional prismatic joint value denoting where the stick
is held in the hand.

(a) (b) (c)
Fig. 14: Manipulator arm environments sampled to train the CVAE. The
solutions obtained using samples generated by LEGO are also visualized.

B. Additional Experiment Results

a) BOTTLENECKNODE and DIVERSEPATHSET: In addition
to the qualitative observations presented in Section VII
(O1 and O2) and Fig. 4, we present here the analysis of
the performance of the foundational algorithms of LEGO,
namely BOTTLENECKNODE and DIVERSEPATHSET when
compared to SHORTESTPATH. Fig. 15a shows that on a
R2 world, BOTTLENECKNODE has a significantly higher
success rate that SHORTESTPATH, almost converging to 1.0
by 400 samples. Fig. 15b shows that in terms of path length,
SHORTESTPATH is initially better but both are eventually
comparable. This is expected because of the near-optimality
objective of BOTTLENECKNODE (4). Fig. 15c shows that
DIVERSEPATHSET has a better success rate. Fig. 15d shows
that while both algorithms are comparable in terms of path
length, DIVERSEPATHSET has a smaller variance.
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Fig. 15: Comparison of SHORTESTPATH against BOTTLENECKNODE (top
row) and DIVERSEPATHSET (bottom row) on success rate (left column) and
normalized path length (right column).

C. Roadmap Construction
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Fig. 16: Performance of LEGO on different roadmaps. The parameter p
denotes the ratio of Halton samples to learned samples in the roadmap).

To evaluate the performance of LEGO, we construct sparse
roadmaps, Gsparse. The sparse graph consisted of 200 samples
in R2, R5 problems and 300 samples in case of R7, R8 and
R9 problems. Not however, that this sparse roadmap contains
both the learned samples as well as samples generated from
Halton sequence. While the learned samples are concentrated
near the bottleneck regions and along diverse paths, Halton
samples ensure the coverage over the free regions of the
configuration space as well. We analyze different proportions
of Halton samples and learned samples. Fig. 16 shows
the performance characteristics of LEGO on roadmaps
constructed with different proportions of Halton and learned
samples for the 2D point robot example. We observe that
LEGO over a roadmap of 200 samples with just 30% learned
samples significantly outperforms LEGO over a Halton
graph (p = 1). Fig. 17 visualizes the samples generated
by LEGO represented by the end-effector positions (blue) in
the workspace.

(a) (b) (c)
Fig. 17: Samples generated by LEGO for manipulator arm planning. The
blue dots represent the end effector positions corresponding to the samples.
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